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a  b  s  t  r  a  c  t

Classification  trees  built  with  the  Classification  And Regression  Tree  algorithm  were  evaluated  for  mod-
elling infrared  spectroscopic  data  in order  to  discriminate  between  genuine  and  counterfeit  drug  samples
and to  classify  counterfeit  samples  in  different  classes  following  the  RIVM  classification  system.

Models were  built  for two data  sets  consisting  of  the  Fourier  Transformed  Infrared  spectra,  the  near
infrared  spectra  and the  Raman  spectra  for  genuine  and  counterfeit  samples  of respectively  Viagra® and

®

eywords:
ounterfeit medicines
DE-5 inhibitors
nfrared spectroscopy
aman spectroscopy
lassification

Cialis .
Easy interpretable  models  were  obtained  for both  models.  The  models  were  validated  for  their  descrip-

tive  and  predictive  properties.  The  predictive  properties  were  evaluated  using  both  cross  validation  as  an
external  validation  set.  The  obtained  models  for  both  data  sets  showed  a 100%  correct  classification  for
the discrimination  between  genuine  and  counterfeit  samples  and  83.3%  and  100%  correct  classification
for  the  counterfeit  samples  for  the  Viagra® and  the  Cialis® data  set  respectively.
ART

. Introduction

Due to the extension of the internet, counterfeit drugs repre-
ent a growing threat for public health in the developing countries
ut also more and more in the industrial world [1,2]. The European
gency for Access to Safe Medicines (EAASM) claims that about
0% of the medicines sold through non identified/recognized web-
ites are counterfeit and that 10% of the market in the developing
ountries and about 1% of the European market is covered by coun-
erfeits [3].  In Europe and the United States one of the most popular
roup of medicines bought through the internet are the phospho-
iesterase type 5 (PDE-5) inhibitors, i.e. sildenafil citrate (Viagra®),
adalafil (Cialis®) and vardenafil hydrochloride (Levitra®).

The World Health Organization (WHO) [4] defines a counterfeit
rug as: “one which is deliberately and fraudulently mislabelled
ith respect to identity and/or source. Counterfeiting can apply to

oth branded and generic products and counterfeit products may
nclude products with the correct ingredients or with the wrong
ngredients, without the active ingredients, with insufficient active

ngredient or with fake packaging.”

Even if this is the internationally accepted definition of a coun-
erfeit medicine, it does not apply to the majority of the illegal

∗ Corresponding author. Tel.: +32 2 642 51 70; fax: +32 2 642 53 27.
E-mail address: Jacques.Debeer@wiv-isp.be (J. De Beer).

731-7085/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpba.2011.08.036
© 2011 Elsevier B.V. All rights reserved.

products encountered on the European market, since they do not
copy the packaging and brand names of the genuine products.
Therefore it was chosen to follow the classification proposed by
the Dutch National Institute for Public Health and the Environment
(RIVM) [5].  This classification (Table 1) distinguishes counterfeits,
which appearance corresponds to the one of the genuine products,
and imitations, which do not. Most of these imitations originate
from Asia, where European and American patents are not recog-
nized.

In literature several analytical techniques were proposed to dis-
criminate between counterfeit and genuine medicines. Savaliya
et al. proposed to use HPLC and LC–MS for the screening of aphro-
disiacs on the Indian market [6].  Infrared-spectroscopy showed
to be a valuable instrument for the identification of counterfeit
medicines. Roggo et al. [7] and Vajna et al. [8] made use of Raman
spectroscopy for the identification of pharmaceutical tablets and
investigate their structural differences, while de Veij et al. [9] used
Raman spectroscopy to detect counterfeit Viagra®. Storme-Paris
et al. [10], de Peinder et al. [11], Puchert et al. [12] and Lopes
et al. [13,14] all demonstrated the usefulness of near infrared spec-
troscopy in the distinction of genuine and counterfeit medicines.
Other techniques found for this purpose are colorimetry [15,16],

TLC [17], NMR  [18,19] and X-ray powder diffraction [20]. An
overview of all these techniques can be found in Ref. [21].

One thing all these techniques have in common is that they gen-
erate a huge amount of data, which is often difficult to interpret in

dx.doi.org/10.1016/j.jpba.2011.08.036
http://www.sciencedirect.com/science/journal/07317085
http://www.elsevier.com/locate/jpba
mailto:Jacques.Debeer@wiv-isp.be
dx.doi.org/10.1016/j.jpba.2011.08.036
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Table 1
Definition of the RIVM classes [5].

Main category Subcategory Inclusion and exclusion criteria

Counterfeit

Professional Appearance in conformity with
genuine medicine;
Content of correct API within
90–110% of declared value;
No other APIs; not genuine
medicine.

Non-professional Appearance in conformity with
genuine medicine;
Content of correct API outside
90–110% of declared value;
No other APIs.

Mixed Appearance in conformity with
genuine medicine;
Contains correct API and another,
known API

Fraudulent Appearance in conformity with
genuine medicine;
Contains a different, known API.

Analog Appearance in conformity with
genuine medicine,
Contains other, unapproved API

Placebo Appearance in conformity with
genuine medicine;
Does not contain APIs.

Imitation

Professional Appearance not in conformity with
genuine medicine;
Content of correct API within
90–110% of declared value;
No other APIs.

Non-professional Appearance not in conformity with
genuine medicine;
Content of declared API outside
90–110% of declared value;
No other APIs.

Mixed Appearance not in conformity with
genuine medicine;
Contains declared API and another
API.

Fraudulent Appearance not in conformity with
genuine medicine;
Contains an undeclared API.

Analog Appearance not in conformity with
genuine medicine;
Contains other, unapproved API

Placebo Appearance not in conformity with
genuine medicine;
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all objects 

x1 < a1 

x2 < a2 

x4 < a4 

x3 < a3 

the selected variable and aj its split value [25–27].
Does not contain APIs.

rder to see differences between the different samples and to deter-
ine the cause of the differences. The majority of the authors make

se of explorative chemometric tools to visualise the differences in
he data obtained for the different samples: Principal Component
nalysis, Partial Least Squares, Projection Pursuit, Multiple Fac-

or Analysis and clustering techniques as hierarchical clustering,
enerative topographic mapping and auto-associative multivari-
te regression trees are examples of methods that were and can
e used for such purpose [9,22–24]. Even if some of the applied
ethods could be able to give a model with predictive ability, only

 few authors created a model able to predict if a sample is coun-
erfeit or not. Storme-Paris et al. [10] applied Simca to obtain a
redictive model. The Simca model is a PCA-based model and the

nterpretation of the predictions is not always clear.
In this paper we evaluated the use of Classification And Regres-

ion Trees (CART) to build an easily interpretable predictive model
o distinguish between counterfeit and genuine medicines and to
lassify the counterfeit samples based on the RIVM definitions [5].

he first aim was to discriminate between genuine and counterfeit
amples with at least 0% of genuines classified as counterfeits. The
econdary aim was to be able to classify the counterfeit samples in
Fig. 1. General structure of a CART-model. xi = selected split variable and
ai = selected split value.

their respective RIVM classes or at least get an idea about the type
of the class.

To do so the data acquired by Sacré et al. [24] was  used. The
different samples were classified, following their visual aspects and
the results obtained after identification and dosage of the active
components, applying the RIVM classification system. The classes
were used as response variable, while the spectroscopic data (FT-IR,
NIR and Raman) were used as descriptive variables.

The results were compared to the results obtained by Sacré et al.
[24]. In this paper the exploratory chemometric tools PCA and PLS
were used for discrimination purposes. The results obtained with
CART were also compared with the ones obtained with a more clas-
sic discrimination method, k-nearest neighbours (kNN). Due to the
limited number of samples of some RIVM classes, Simca was not
applied, since this will result in non representative classification
rates for the counterfeit samples. This is due to the fact that in Simca
each class is modelled separately.

2. Theory

2.1. Classification And Regression Trees (CART)

CART is a non-parametric statistical technique, developed by
Breiman et al. [25] in 1984, which is able to solve classification
(categorical dependent variables) as well as regression problems
(continuous dependent variables). In both cases the method builds
a decision tree, describing a response variable as a function of dif-
ferent explanatory variables (Fig. 1).

A CART analysis generally consists of three steps. In a first step
the maximum tree is build, using a binary split-procedure. The
maximum tree is overgrown and closely describes the training
set, usually resulting in overfitting. In a second step this overfitted
model is pruned. This procedure results in a series of less complex
trees, derived from the maximum tree. In the third and final step the
optimal tree is selected using a cross validation procedure [25–27].

2.1.1. Building the maximum tree
The maximum tree is build using a binary split procedure, start-

ing at the tree root, consisting of all objects in the training set. In
every step of the procedure a mother group is considered and split-
ted into 2 daughter groups. The split is chosen in such a way that the
impurity of the daughter groups is lower than that of the mother
group. This means that the daughter groups become more homo-
geneous in the response variable (class numbers). In the following
step each daughter group is considered a mother group. Every split
is defined by one value of one explanatory variable. For continuous
explanatory variables the splits are defined by “xi < aj” where xi is
To choose the most appropriate variable and split value, CART
uses an algorithm in which all descriptors and all possible split
values are considered. The split resulting in the highest decrease in
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mpurity between the mother group (tp) and the daughter groups
tL and tR) is selected. Mathematically this is expressed as:

i(s, tp) = ip(tp) − pLi(tL) − pRi(tR)

here i is the impurity, s the candidate split value, and pL and pR
he fractions of the objects in the left and right daughter groups,
espectively [25–27].

For classification trees the impurity can be defined by differ-
nt split criteria [25]. The three commonly used split criteria are
he Gini index, the Twoing index and the Information index. In this
ork CART models were built using the Gini index. The Information

ndex and the Twoing index were not used since these measures
ere not found useful in solving the considered classification prob-

em.
The Gini index is defined as

i  = 1 −
k∑

j=1

(pj(t))2

here j = 1, 2, 3, . . .,  k is the number of classes of the categorical
esponse variable and pj(t) the probability of correct classification
or class j at node t.

.1.2. Tree pruning
The obtained maximum tree usually overfits the training set,

herefore the model is pruned by successively cutting terminal
ranches. This procedure results in a series of smaller sub trees
erived from the maximum tree. The different sub trees with the
ame complexity are then compared to find the optimal. This com-
arison is based on a cost-complexity measure R˛(T), in which both
ree accuracy and complexity are considered [25–27].  For each sub
ree complexity T it is defined as

˛(T) = R(T) + ˛|�T |
ith R(T) the average within-node sum of squares, |�T | the tree

omplexity, defined as the total number of nodes of the sub tree,
nd  ̨ the complexity parameter, which is a penalty for each addi-
ional terminal node. During the pruning procedure, ˛ is gradually
ncreased from 0 to 1 and for each value of ˛, the tree is selected

hich minimizes R˛(T). For a value of  ̨ equal to zero, R˛(T) is min-
mized by the maximum tree. By gradually increasing  ̨ a series of
rees with decreasing complexity is obtained [25–27].

.1.3. Selection of the optimal tree
From the obtained sequence of sub trees, the optimal has to be

elected. The selection is usually based on the evaluation of the
redictive error of the models using a cross validation procedure.

n this paper a 10-fold cross validation procedure [26,28] was used.
he predictive error is then given as the overall misclassification
ate for each of the sub trees [25]. The optimal model is the simplest
odel with a predictive error within one standard error (SE) of the
inimal predictive error. This rule, generally referred to as the one

E-rule, allows the selection of a less complex model than the one
ith the minimal misclassification rate, without a significant loss of

nformation and accuracy [25]. The algorithm allows the selection
f all tree complexities. If previous knowledge about the data set
ustifies it, one can deviate from the one SE-rule and select another
ree as optimal model.

.2. k Nearest Neighbours (kNN)
The k-NN algorithm [28] was applied on the training set. The
lgorithm computes the minimal Euclidian distances between an
nknown object and each of the objects of the training set. For a
raining set of n samples, n distances are calculated. Then it selects
nd Biomedical Analysis 57 (2012) 68– 75

the k nearest objects to the unknown one. The unknown object
is classified in the group to which the majority of the k objects
belong. The number of nearest neighbours is optimised using a
cross validation procedure. The main advantages of this method are
its mathematical simplicity and the fact that it is free from statistical
assumptions.

3. Methods and materials

3.1. Data

The data for the Viagra® like samples consists of the Fourier-
transformed infrared, the near-infrared and the Raman spectra for
55 counterfeit samples and 9 genuine samples. For the Cialis® like
samples the data consists of the same type of spectra for 39 counter-
feit and 4 genuine samples. All spectra were measured in triplicate.
For more details about how this data was acquired we refer to Sacré
et al. [24]. During the study of Sacré et al. it was  seen that the vari-
ability in spectral data between the genuine samples is very low.
The limited number of genuine samples should therefore be enough
to represent the genuine class in the models. The more because
CART defines the classes based on the improvement of homogene-
ity from mother to daughter leaves and therefore should isolate the
small class of genuines relatively early in the building of the tree.

All counterfeit and imitation samples were donated by the
Federal Agency for Medicines and Health Products in Belgium
(AFMPS/FAGG). One batch of each dosage of genuine Viagra®

(25 mg,  50 mg  and 100 mg) was kindly provided by Pfizer SA/NV
(Belgium). Eli Lilly SA/NV (Benelux) kindly provided one batch of
each commercial packaging (10 mg  and 20 mg)  of genuine Cialis®.
Two  other batches of each dosage of the genuine products were
purchased from local pharmacies in Belgium.

The counterfeit samples were classified following the classifica-
tion proposed by the RIVM [5].  The classification for both data sets
is given in Table 2.

3.2. Data preprocessing

The data preprocessing was performed using the HoloREACTTM

software (Kaiser Optical Systems, USA, Version 2.3.5). For NIR and
FT-IR spectroscopy, the three spectra of a sample were normal-
ized and averaged. For Raman spectroscopy, the three spectra of a
sample were baseline corrected using the Pearson’s method [29].

In order to evaluate the predictive ability of the models the
Viagra® and Cialis® data sets were divided in training and test sets.
It was chosen that the test sets would contain about 20% of the sam-
ples. The division in test- and training set was performed using the
Duplexx algorithm [30]. This algorithm starts by selecting the two
samples with the highest Euclidean distance in the data space for a
first set. The next two samples with the highest Euclidean distance
are selected for a second set. The procedure continues by selecting
iteratively pairs of samples for the first and the second set. The sec-
ond set was chosen as test set, while the other set combined with
the samples not selected by the algorithm formed the training set.
During selection of the test sets it was  made sure that one genuine
sample was selected for the test set, while the others were kept in
the training set. This was necessary due to the limited number of
genuine samples in the data sets.

From the PCA plots [31] shown in Figs. 2 and 3 it can be seen that
the test sets selected by the Duplexx algorithm cover quite well the
data space of the data sets.
3.3. Chemometrics

The data preprocessing and the modelling was  performed using
Matlab R2009b (The Mathworks, Natick, USA). The programming
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Table 2
Composition of the data sets in function of the RIVM classes [5].

Main category Subcategory Category number Number of Viagra® like samples Number of Cialis® like samples

Counterfeit

Professional 1 1 0
Non-professional 2 3 0
Mixed 3 1 5
Fraudulent 4 0 0
Analog 5 0 0
Placebo 6 0 0

Imitation

Professional 7 45 27
Non-professional 8 4 2
Mixed 9 1 5
Fraudulent 10 0 0
Analog 11 0 0
Placebo 12 

Genuine 0 

F
t
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a
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s
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t

tion samples over the different classes it was observed that 10
of the 12 counterfeit samples of the external test set were classi-
fied
ig. 2. PCA plots representing the spread of the test set for the Viagra® data set over
he data space.

f the CART algorithm was done according to the original CART
lgorithm proposed by Breiman [25].

. Results and discussion

.1. Viagra® like samples
For all data sets used the data was first autoscaled. The signal
t the different wavelengths in the respective spectra were used
s explanatory variables while the class numbers of the different
amples were used as response. The class numbers were assigned

ig. 3. PCA plots representing the spread of the test set for the Cialis® data set over
he  data space.
0 0

9 4

to the different samples based on the classification proposed by
RIVM (Table 2).

The maximal tree was build and pruned. In a next step a 10-fold
cross validation was  carried out resulting in a graph representing
the percentage misclassification as a function of the tree complex-
ity.

4.1.1. Classification tree based on the FT-IR data
Fig. 4 shows the graph of the percentage misclassification as a

function of the tree complexity obtained with the FT-IR data. As can
be seen from the figure the tree with complexity 2 has the small-
est cross validation error. Since we  have more than two classes and
following the general rule that the optimal tree can have each com-
plexity with a cross validation error within one standard deviation
of the tree with the smallest error, the tree with complexity five
was  selected as optimal tree (Fig. 5). The cross validation error was
0.26 or 11.6%. Even if the cross validation error is quite high, it could
be observed that during cross validation all genuine samples were
classified correctly and none of the counterfeit or imitation samples
were classified as genuine. This was confirmed during external val-
idation, which means that the CART model is able to distinguish
between genuine and counterfeit drugs, based on the FT-IR data.
When focussing on the classification of the counterfeit or imita-
 correctly while the 2 other were classified as non-professional
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Fig. 4. the cross validation error and the resubstitution error in function of the tree
complexity for the FT-IR data.
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Fig. 5. Classification tree based on the FT-IR data for the Viagra® data set. Each split
is  defined by the selected wavelength and its split value. Each leaf is defined by
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Fig. 6. Classification tree based on the NIR data for the Viagra® data set. Each split

excipients. The wavelength of 501.6 cm−1 is a characteristic sig-
nal for the Raman spectrum of calcium hydrogenophosphate while
846 cm−1 is a wavelength corresponding to a signal characteristic
he class number of the class most represented in the leaf and the graph gives the
istribution (homogeneity) of the different samples in the leaf.

mitations (class 8) in stead of professional imitations (class 7).
ince the data set of the Viagra® like samples contains representa-
ives of 7 classes, one should select a tree with minimal 7 leafs in
rder to be able to predict each class. Since our primary goal was to
istinguish between counterfeit and genuine and the fact that we
hose the optimal tree size based on the cross validation results,
he leafs of the selected tree are not homogeneous for some coun-
erfeit classes (classes 1, 3, and 9) and so the tree model is only able
o give an indication about the sample type for these samples. The
nhomogeneity for these classes in the model is probably due to the
ow number of samples belonging to these classes.

One of the main disadvantages of CART, used with spectral data
s that it selects only one variable/wavelength to define each split.
ince spectral data usually has a signal over a range of wavelengths
his causes the difficulty to interpret the significance of the selected
avelengths. In fact for the CART model based on the FT-IR data the
avelengths of 886 cm−1 and 1700 cm−1 could be related to the

oncentration of sildenafil present in the samples. For the other
elected wavelengths no logical explanation could be found.

.1.2. Classification tree based on the NIR data
From a similar graph as shown in Fig. 4 it could be concluded that

or the NIR data, the tree with complexity 4 has the lowest cross
alidation error and is the optimal tree (Fig. 6). The cross validation
rror was 0.37 or 14.4%. Investigation of the tree shows that the
eaf of the genuine samples is homogeneous and that during cross
alidation all genuine samples were classified correctly and that
one of the counterfeit samples was classified as genuine. These
esults were also reflected during the external validation. During
xternal validation, 10 of the 12 counterfeit samples were classified
orrectly, while two professional imitations (class 7) were classi-
ed as non-professional counterfeits. From these results it can be
oncluded that the CART model based on NIR-data is comparable
o the model obtained with the FT-IR data for its predictive and
escriptive properties.

Investigation of the selected variables revealed that the selected
avelengths 4150.1 cm−1 and 5233.9 cm−1 correspond to specific
eaks of the NIR spectrum of microcrystalline cellulose. It can there-
ore be stated that the discrimination of genuine and counterfeit

amples by the CART model, based on NIR data, is partly based on
he presence of different amounts of microcrystalline cellulose in
he counterfeit and the genuine samples.
is  defined by the selected wavelength and its split value. Each leaf is defined by
the class number of the class most represented in the leaf and the graph gives the
distribution (homogeneity) of the different samples in the leaf.

4.1.3. Classification tree based on the Raman spectroscopy data
For the Raman spectroscopic data the tree with complexity 3

was  selected as the optimal tree (Fig. 7). The cross validation error
was  0.25 or 11.5%. Investigation of the tree and the cross valida-
tion results show that the leaf representing the genuine samples
(0) is homogeneous and that no genuine samples are classified
in an other leaf. Also during cross validation all genuine samples
are correctly classified and none counterfeit sample is classified as
genuine. The external validation reflects the same, all genuines are
classified as genuine and no counterfeits are classified as genuine.
When focussing on the classification of the counterfeit samples of
the external test set, the model gives a correct classification for 8
of the 12 samples, which is significantly worse compared to the
previous 2 models.

The selected wavelengths could be linked to the presence of
Fig. 7. Classification tree based on the Raman data for the Viagra® data set. Each
split is defined by the selected wavelength and its split value. Each leaf is defined by
the class number of the class most represented in the leaf and the graph gives the
distribution (homogeneity) of the different samples in the leaf.
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Fig. 8. Classification tree based on the Raman data for the Cialis® data set. Each

correctly and no counterfeit samples are classified as genuine. It has
also to be mentioned that during external validation all counterfeit
samples were classified correctly.
E. Deconinck et al. / Journal of Pharmaceu

or hydroxypropylcellulose. Calcium hydrogenophosphate is
resent in the genuine samples, but not or in different amounts

n the counterfeit samples. Hydroxypropylcellulose on the other
and is not present in the genuine samples. Again it can be stated
hat the discrimination of the CART model is based on the presence
f secondary components and excipients.

.1.4. Classification trees based on the combination of the
pectral data

Tree models were built using combinations of the data. One
odel was built using the FT-IR and the NIR data, one using the

T-IR and the Raman data, one using NIR and Raman and one using
he combination of the three.

None of these models led to satisfying results, therefore it was
ecided not to discuss them in detail.

The models obtained with the combination of the FT-IR and the
IR data as well as the one based on the three types of spectral data,
id not result in a satisfying model since a number of counterfeit
amples was classified as genuine during both cross validation as
xternal validation. Since the models based on each technique sep-
rately were able to make this distinction, it seems that combining
he two data sets introduces noise in the model.

The other two models (combination of FT-IR and Raman and NIR
nd Raman respectively) were able to distinguish counterfeit from
enuine samples, since no genuine sample were classified as coun-
erfeit and no counterfeit as genuine, during both cross validation
s external validation. During external validation it was  seen that
he models had higher misclassification rates (4/12 and 5/12) than
he models discussed in Sections 4.1.1 and 4.1.2.

From these results it has to be concluded that the combination
f different types of spectral data, does not result in better models
or the Viagra® data set.

.2. Cialis® like samples

Exactly the same approach as described for the Viagra® data set
as followed. The assignment of the class numbers, based on the
IVM classification, for the Cialis® data set is given in Table 2.

.2.1. Classification trees based on the FT-IR and the NIR data
From the graphs of percentage misclassification in function of

he tree complexity the trees of complexity three and five were
elected as optimal trees for respectively the FT-IR and the NIR
ata. Since cross validation and external validation showed that
oth models were not able to distinguish between genuine and
ounterfeit samples, these models are not further discussed.

.2.2. Classification tree based on the Raman spectroscopy data
The tree of complexity five was selected as the optimal model

btained using the Raman spectroscopy data for the Cialis® data
et (Fig. 8). A cross validation error of 0.62 or 28% was  obtained,
hich is high if it is compared to the errors obtained for the models

or the Viagra® data set. Investigation of the leafs shows that the
roup of the genuine samples is homogeneous and that no genuine
s classified with counterfeit samples. Also during cross validation
ll genuine samples are correctly classified and no counterfeit sam-
les are classified as genuine. During external validation on the
ther hand it could be observed that despite the fact that all gen-
ine samples are correctly classified, two counterfeit samples are
rongly classified from which one is classified as genuine.

Three of the selected wavelengths (1109.1 cm−1, 1119.0 cm−1
nd 1120.2 cm−1) could be linked to the Raman spectrum of lac-
ose, an excipient present in both genuine as counterfeit samples.
robably the differences in amounts partly account for the discrim-
nation.
split is defined by the selected wavelength and its split value. Each leaf is defined by
the class number of the class most represented in the leaf and the graph gives the
distribution (homogeneity) of the different samples in the leaf.

4.2.3. Classification trees based on the combination of the
spectral data

Tree models were built using a combination of the different
types of spectral data. The only model able to distinguish between
counterfeit and genuine samples was the one combining the NIR
and the Raman spectroscopic data. The tree with complexity six
was  selected as the optimal tree (Fig. 9). A cross validation error of
0.50 or 22.5% was  obtained. Investigation of the leafs showed that
the leaf representing the genuine samples is homogeneous and that
no genuine samples are classified with counterfeit ones. Also during
cross validation and external validation all genuines are classified
Fig. 9. Classification tree based on the combination of the NIR and the Raman data
for  the Cialis® data set. Each split is defined by the selected wavelength and its split
value. Each leaf is defined by the class number of the class most represented in the
leaf and the graph gives the distribution (homogeneity) of the different samples in
the leaf.
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Table 3
Overview of the prediction errors of the proposed models.

Data used CCR genuine/counterfeit (cross-validation) (%) Overall CCR (cross validation) (%) CCR genuine/counterfeit Overall CCR

Viagra® like samples FT-IR 100 88.4 13/13 11/13
NIR 100 85.6 13/13 11/13
Raman 100 88.5 13/13 9/13
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Three of the selected NIR wavelengths (4215.6 cm−1,
997.5 cm−1 and 6730.3 cm−1) could be linked to excipients,
resent in the genuine Cialis® tablets. 4215.6 cm−1 corresponds
o a characteristic peak of lactose, 5997.5 cm−1 to a characteristic
eak of carmellose and 6730.3 cm−1 to one of microcrystalline
ellulose. The two other wavelengths could not be linked to
ompounds, present or not in counterfeit samples. Since three of
he five wavelengths could be linked to excipients present in the
enuine tablets, the discrimination is again probably due to the
ifferences in amounts.

.3. Results obtained with kNN

kNN was applied to the same data sets as described in Sections
.1 and 4.2.  In a first step the optimal number of nearest neighbours
as chosen, for each data set, using a leave-one-out cross valida-

ion procedure. The models were evaluated based on the correct
lassification rate (ccr) obtained during cross validation and the
rediction of the external test set.

Two kind of kNN models were built, one using only the classes
 for genuine samples and 1 for counterfeit samples and one using
he different classes as used for the CART models. The reason is the
act that the theory of the algorithms (CART and kNN) are com-
letely different. While CART will isolate the genuine group in a
arly phase of the model building and continue further classifica-
ion of the counterfeits without influence of the genuine group, kNN
ill model the data set as a whole, resulting in a higher influence

f the unbalanced numbers of samples in the different classes.
In general it can be stated that the results obtained with kNN

re unsatisfying.
For the Viagra® dataset ccr values of 0.90 (optimal number of

 = 3), 1.00 (optimal number of k = 3) and 0.9804 (optimal num-
er of k = 3) were obtained for respectively the FT-IR, the NIR- and
he Raman data, using cross validation when using the binary class
genuine vs. counterfeit) approach. Only the model based on the
IR data was able to discriminate between genuine and counter-

eit, which was reflected by the 100% ccr for both cross validation as
xternal validation. In the models based on the FT-IR data and the
aman data at least one genuine was classified as counterfeit, which

s unacceptable since it is a false positive. When using the differ-
nt RIVM classes ccr values of 0.55 (optimal number of k = 5), 0.61
optimal number of k = 5) and 0.43 (optimal number of k = 9) were
btained for respectively the FT-IR, the NIR- and the Raman data,
sing cross validation. For the external validation ccr values were
btained of 0.31, 0.23 and 0.23 respectively. The more in all models
ome originals were classified as counterfeit and some counterfeits
s original.

For the Cialis® dataset it was not possible to discriminate
etween original and counterfeit samples using kNN. Probably due
o the fact that the number of genuine samples in this data set is
oo low for the algorithm.
. Conclusions

The use of classification trees as easy interpretable models
or the distinction of counterfeit and genuine drugs as well as
72 8/9 6/9
77.5 9/9 9/9

the classification of counterfeit drugs, following the RIVM classi-
fication, was  evaluated. All models were based on spectroscopic
data.

Models were built for two  data sets, one consisting of the spec-
troscopic data for genuine and counterfeit samples of Viagra® and
one consisting of the spectroscopic data for genuine and coun-
terfeit samples of Cialis®. An overview of the obtained correct
classification rates for the different models proposed is given in
Table 3. Only models with a 100% correct classification rate for the
discrimination between genuine and counterfeit, during cross val-
idation, are present in the table, since only these models are of
interest.

For the Viagra® data set, two  comparable models could be pro-
posed, one based on the FT-IR data and one on the NIR data. The
models have cross validation errors of 11.6% and 14.4% respectively
and equal misclassification rates of 2/12 after external valida-
tion. Since both models are comparable the choice is based on
the equipment present in the laboratories. For the both models
the classification/discrimination could partly be explained by the
differences in amounts of active substance (FT-IR model) and excip-
ients (NIR model).

The combination of the different types of spectroscopic data did
not result in better models compared to the ones obtained with
only FT-IR or NIR data.

For the Cialis® data set the best model was  obtained by com-
bining the NIR and the Raman spectroscopic data. All other models
were not able to make the distinction between counterfeit and gen-
uine samples. Only the model based on the Raman spectroscopy
data was  able to classify all genuine samples correctly, but also
classified a counterfeit sample as genuine.

The proposed model has a cross validation error of 22.5%, but
showed a 100% correct classification during external validation.
Again the majority of the selected wavelengths could be linked
to differences in amounts of excipients between the different
samples.

The obtained results show that the application of CART to spec-
troscopic data result in easy interpretable models, which are able
to discriminate between counterfeit and genuine drug samples and
which are able to classify the counterfeit samples in their cor-
responding RIVM class and this with low misclassification rates,
evaluated with an external test set. The classification of the coun-
terfeits in their respective RIVM class, can allow an easy and fast
evaluation of the risk for public health of a considered counterfeit
sample.

Further it was shown that the results obtained with this tree
based method are far better than the ones obtained with the more
traditional discriminating method kNN. If the results of the CART
models are compared to the results obtained with PLS by Sacré
et al. [24], it can be seen that both methods are able to discriminate
between genuine and counterfeit products, but that CART also allow
a clear discrimination of the counterfeit samples in different classes.
The more CART has the advantage to be able to classify the sam-

ples in a discriminating and easy interpretable model. Though the
models are limited by the nature of the data set and they should be
adapted and updated each time new samples/classes are encoun-
tered.
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20] J.K. Maurin, F. Pluciński, A.P. Mazurek, Z. Fijałek, The usefulness of simple X-
ray powder diffraction analysis for counterfeit control—the Viagra example, J.
Pharm. Biomed. Anal. 43 (2007) 1514–1518.

21] R. Martino, M.  Malet-Martino, V. Gilard, Counterfeit drugs: analyti-
cal techniques for their identification, Anal. Bioanal. Chem. 398 (2010)
77–92.

22] E. Deconinck, A.M. van Nederkassel, I. Stanimirova, M.  Daszykowski, F. Ben-
said,  M. Lees, G.J. Martin, J.R. Desmurs, J. Smeyers-Verbeke, Y. Vander Heyden,
Isotopic ratios to detect infringements of patents or proprietary processes
of  pharmaceuticals two  case studies, J. Pharm. Biomed. Anal. 48 (2008)
27–41.

23] M. Dumarey, A.M. van Nederkassel, I. Stanimirova, M.  Daszykowski, F. Bensaid,
M.  Lees, G.J. Martin, J.R. Desmurs, J. Smeyers-Verbeke, Y. Vander Heyden, Rec-
ognizing paracetamol formulations with the same synthesis pathway based on
their trace-enriched chromatographic impurity profiles, Anal. Chim. Acta 655
(2009) 43–51.

24] P.-Y. Sacré, E. Deconinck, T. De Beer, P. Courselle, R. Vancauwenberghe, P. Chiap,
J.  Crommen, J.O. De Beer, Comparison and combination of spectroscopic tech-
niques for the detection of counterfeit medicines, J. Pharm. Biomed. Anal. 53
(2010) 445–453.

25] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression
Trees, Wadsworth & Brooks, Monterey, 1984.

26] E. Deconinck, T. Hancock, D. Coomans, D.L. Massart, Y. Vander Heyden, Classifi-
cation of drugs in absorption classes using Classification And Regression Trees
(CART)-methodology, J. Pharm. Biomed. Anal. 39 (2005) 91–103.

27] E. Deconinck, M.H. Zhang, D. Coomans, Y. Vander Heyden, Classification tree
models for the prediction of blood–brain barrier passage of drugs, J. Chem. Inf.
Model. 46 (2006) 1410–1419.

28] B.G.M. Vandeginste, D.L. Massart, L.M.C. Buydens, S. De Jong, P.J. Lewi, J.
Smeyers-Verbeke, Handbook of Chemometrics and Qualimetrics—Part B, Else-
vier Science, Amsterdam, 1997.

29] G.A. Pearson, A general baseline-recognition and baseline flattening algorithms,
J.  Magn. Reson. 27 (1977) 265–272.
30] R.D. Snee:, Validation of regression models: methods and examples, Techno-
metrics 19 (1977) 415–428.

31] D.L. Massart, B.G.M. Vandeginste, L.M.C. Buydens, S. De Jong, P.J. Lewi, J.
Smeyers-Verbeke:, Handbook of Chemometrics and Qualimetrics—Part A, Else-
vier Science, Amsterdam, 1997.

http://www.eaasm.eu/
http://aps.who.int/gb/ebhwa/pdf_files/A62/A62_13-en.pdf

	Classification trees based on infrared spectroscopic data to discriminate between genuine and counterfeit medicines
	1 Introduction
	2 Theory
	2.1 Classification And Regression Trees (CART)
	2.1.1 Building the maximum tree
	2.1.2 Tree pruning
	2.1.3 Selection of the optimal tree

	2.2 k Nearest Neighbours (kNN)

	3 Methods and materials
	3.1 Data
	3.2 Data preprocessing
	3.3 Chemometrics

	4 Results and discussion
	4.1 Viagra® like samples
	4.1.1 Classification tree based on the FT-IR data
	4.1.2 Classification tree based on the NIR data
	4.1.3 Classification tree based on the Raman spectroscopy data
	4.1.4 Classification trees based on the combination of the spectral data

	4.2 Cialis® like samples
	4.2.1 Classification trees based on the FT-IR and the NIR data
	4.2.2 Classification tree based on the Raman spectroscopy data
	4.2.3 Classification trees based on the combination of the spectral data

	4.3 Results obtained with kNN

	5 Conclusions
	References


